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146 C.P.ELLINGTON

The lift and power requirements for hovering insect flight are estimated by combining
the morphological and kinematic data from papers II and III with the aerodynamic
analyses of papers IV and V. The lift calculations are used to evaluate the importance
in hovering of two distinct types of aerodynamic mechanisms: (i) the usual quasi-steady
mechanism, where the circulation for lift is primarily determined by translation of
the wing, and (ii) rotational mechanisms, where the circulation is largely governed
by wing rotation at either end of the wingbeat. Power estimates are compared with
the available measurements of metabolic rate during hovering to investigate the role
of elastic energy storage, the maximum mechanical power output of the flight muscles,
and the muscle efficiency.

The quasi-steady mechanism proves inadequate for the lift requirements of
hover-flies using an inclined stroke plane, and for a ladybird beetle and a crane-fly
hovering with a horizontal stroke plane. Observed angles of attack rule out lift
enhancement by unsteady modifications to the quasi-steady mechanism, such as
delayed stall, but the rotational lift mechanisms proposed in paper I'V seem consistent
with the kinematics. The rotational mechanisms rely on concentrated vortex
shedding from the leading edge during rotation, with attachment of that vorticity as
a leading edge separation bubble during the subsequent half-stroke. Strong leading
edge vortex shedding should result from delayed pronation for the hover-fly, a near
fling and partial fling for the ladybird, and profile flexion for the crane-fly (the flex
mechanism).

The kinematics for the other insects hovering with a horizontal stroke plane are
basically the same as for the anomalous crane-fly, and the quasi-steady mechanism
cannot be accepted for them while rejecting it for the crane-fly. All of these insects
flex their wings in a similar manner during rotation, and could use the flex mechanism
for lift generation. The implication is that most, if not all, hovering animals do not
rely on quasi-steady aerodynamics, but use rotational lift mechanisms instead.

It is not possible to reconcile the power estimates with the commonly accepted
values of both the mechanochemical efficiency of insect flight muscle (about 259%,)
and its maximum mechanical power output (about 20 W N~! of muscle). Maximum
efficiencies of 12-29 %, could be obtained only if there is no elastic storage of the kinetic
energy of the flapping wings, but this would require more than twice the accepted
value for maximum mechanical power output. The available evidence suggests that
substantial elastic storage does occur, and that the maximum mechanical power
output is close to the accepted value. If so, then the efficiency of both fibrillar and
non-fibrillar flight muscle is likely to be only 5-99%,.

1. INTRODUCTION

The preceding papers of this study considered four more or less separable aspects of the
aerodynamics of hovering insect flight: morphology, kinematics, lift mechanisms and aero-
dynamic theory. In this final paper, these aspects are brought together to estimate the lift and
power requirements for the insects from the film sequences selected in paper III. Equations
for lift and power are derived for animals with only one pair of ‘wings’ in an aerodynamic
sense: the equations are difficult enough without introducing the complications of uncoupled
fore- and hind-wings: as would have been necessary if hovering film sequences had been
obtained for Chrysopa carnea. Morphological and kinematic data from papers IT and III are then
used in the equations to calculate numerical estimates.

To simplify the analysis it will be assumed that the duration of the downstroke is equal to
the upstroke, and that the wing motion is confined to the stroke plane. These helpful
assumptions are not necessary, but judging by the results of paper III they will introduce no
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LIFT AND POWER FOR HOVERING FLIGHT 147

significant errors. The relative stroke plane defined in paper V will be used in calculating the
aerodynamic forces with respect to the relative velocity of the wings; this approximation
effectively reduces a three dimensional problem to a two dimensional one, and gives but small
errors in the direction and magnitude of the force vectors. Bars and ‘hats’ over symbols will
denote mean and non-dimensional values as before. In case the reader has forgotten the
meaning of any symbols used in the earlier papers, the symbol table in paper I should prove
useful.

2. EQUATIONS FOR LIFT
2.1. Relative stroke plane angle

The relative velocity of the wing, equal to the vector sum of the flapping velocity U and
the induced velocity w,, is an important determinant of the aerodynamic forces. The relative
velocity is approximately parallel to the relative stroke plane, and its magnitude U, can be
estimated from equation (V. 8) as

U, = Ucos f/cos f,. (1)

(Equations from other papers in this series will be identified by the paper number in roman
numerals, followed by the equation number within that paper; e.g., equation (V. 8) refers to
equation (8) of paper V.) The lift and profile drag forces are perpendicular and parallel to
the relative velocity, respectively, and hence are perpendicular and parallel to the relative stroke
plane for each half-stroke. The angle £, between the relative stroke plane and the horizontal
must therefore be determined before the aerodynamic forces can be investigated. This angle
differs for the half-strokes, and it is given by equation (V. 46) as

Prp(1+7)

tan 131‘ = tanﬂim, (2)

where the negative sign applies to the downstroke and the positive to the upstroke, and the
stroke angle @ is in radians. The second term on the right-hand side is equal to the mean induced
velocity during the lift impulse divided by the horizontal component of the mean wing tip
velocity. This term can also be expressed using the spacing parameter s from equation (V. 36)
if 5 is written as 8mp

2 w

5= pfPn2®2R2 R cos? i’ (3)

where p, is the wing loading. The non-dimensional frequency f equals the vertical impulse
frequency f divided by the wingbeat frequency n; the value of fis 2 if both half-strokes provide
weight support, and 1 if only one does so. Equation (2) can then be transformed into
5 (140.079 %)

4+/ (rDcosf)

We now consider the aer6dynamic mechanisms that might produce the lift required for

tan f, = tan g+ (4)

hovering flight. Many mechanisms were propounded in paper IV, but it is not necessary, or
not possible in some cases, to investigate them individually. In fact, it will be sufficient to
examine only two broad categories: (i) the quasi-steady mechanism, where the circulation
around a wing element is primarily determined by translation of the wing, and (ii) rotational
mechanisms, where the circulation is largely governed by wing rotation.

10-2
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148 C.P.ELLINGTON

2.2. Quasi-steady mechanism

The quasi-steady mechanism assumes that the lift force on a flapping wing is equal to that
experienced in steady motion at the same instantaneous linear velocity and attitude. The
validity of this assumption for hovering animal flight has been tested by several authors using
the proof-by-contradiction outlined in paper I (Weis-Fogh 1972, 1973; Ellington 1975;
R.A. Norberg 1975; U. M. Norberg 1975, 1976). Following Osborne (1951), a mean value
of the lift coefficient Cy, is found that satisfies the mean lift requirement. This is equivalent to
assuming that the effective angle of incidence, and hence the lift coefficient Cy, is constant
along the wing and throughout the cycle. According to the kinematic results of paper I1I1, this
assumption is reasonable as long as the rotational phases at either end of the wingbeat are
ignored. Neglect of the rotational phases is consistent with the quasi-steady mechanism, though,
because the low translational velocities during rotation would produce very little lift. The mean
lift coefficient obtained in this manner is particularly informative because it is the minimum
value of Cy, compatible with flight: if Cy, varies during the wingbeat, then some instantaneous
values must exceed the mean, Cy..

The mean lift coefficient will be derived from the impulse method of the vortex theory in
paper V, but it can also be found from the usual blade-element equations as outlined in paper I.
Assuming Cy, is equal to the mean value Cy, the circulation around each wing element is
given by r=1cU.Cy. (5)
Equation (1) and the definition of the flapping velocity U = r(d¢/d¢) can be substituted into
equation (5), which can then be expressed in terms of the non-dimensional parameters of

papers 1I and III;
n®S cos f— A
Ir=——=Cyif ; 6
oo Cuirldg/d); (6)
the total wing area $ should not be confused with the spacing parameter s. The maximum
circulation Iy, occurs when both dgﬁ /df and the product ¢ are maxima. The non-dimensional

circulation I (= I'/[yp,y) is therefore
_ if(dg/di)
() max (/) max

Equation (7) can be substituted into equation (V. 5) to find the non-dimensional impulse I
from circulatory lift over a half-stroke. The resulting expression for ['s based on the assumption

~—

of a constant lift coefficient equal to Cy, and it will be written as /(Cy) in recognition of this:

(7)

£y 1 1 d¢A . lAfz )
e <€;>max<d§£/df)max _, di d¢ L érdr. (8)

The integral with respect to df is simply the non-dimensional second moment of wing area from
paper 11, /2(S). The other integral equals } times the mean square of d¢/di, which is given
in paper III. Thus the non-dimensional impulse is

fC) = RS dd/dl):
Y2 (6) max (/) max

9)
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LIFT AND POWER FOR HOVERING FLIGHT 149

The mean lift L over a half-stroke was given in paper V as 2nl, where I is the impulse of
the vortex sheet created by circulatory lift: from equation (V. 5) and the definition of 4.,

L = 2pn® R2I,,, I cos B/ cos B,. (10)

Substitution of equations (6) and (9) yields

7 _ pri@ RES7(S) (déh/di)? cos?

8 cos? 4. Cy. (11)

We can define a non-dimensional mean lift Z over the half-stroke equal to L divided by mg,
and solve for the mean lift coeflicient in terms of the wing loading p,, (=mg/S),

o 8pw L cos? e

i pn2®2R*74(S) (d¢/dF)? cos? ,b’

No assumptions about the direction and magnitude of the mean lift force have been invoked

(12)

in this derivation of Cy, so equation (12) may be used to calculate the mean lift coefficient
required by the quasi-steady mechanism to produce a mean lift force of mgl—: during any half-stroke
in hovering flight; this mean lift force is not necessarily vertical.

We now return to the problem of aerodynamic mechanisms after that brief mathematical
interlude. Apart from wing rotation, there are two effects which are not included in the
quasi-steady mechanism: the Wagner effect, and the delayed stall of translation (paper IV). In
the Wagner effect, the instantaneous circulation around a wing element lags behind the
quasi-steady value because of the induced velocity field of shed vorticity. The ‘starting’ vorticity
shed at the beginning of a half-stroke will therefore delay the growth of circulation around the
wings. The induced velocity field of the ‘starting’ vorticity will also be augmented by that of
any ‘stopping’ vorticity from the preceding half-stroke, so the growth of circulation can be
delayed even more than usual. Because the wings move but a few chord lengths, the circulation
is unlikely to reach its full value before beginning to decay towards the end of the half-stroke.
Thus the predicted maximum circulation I, ,, will not be realized, and the mean lift over the
half-stroke will be reduced. The extent of this effect cannot be estimated, however; the Wagner
effect has only been analysed for two-dimensional aerofoils, and the results should not be
applied directly to the three-dimensional pattern of shed vorticity in hovering. All that can
be done at present is to appreciate that substantially more lift will be required of the wings
than is indicated by Cy, from the quasi-steady assumption.

The delayed stall of translation allows a wing to operate effectively above the stall angle for
a few chords of translation. For a brief period, the wings can therefore generate more lift than
would be expected under quasi-steady conditions. The effective angles of incidence during
hovering will be estimated later to determine whether or not animals do rely on delayed stall.
If they do, then the growth of the enhanced circulation is still subject to the Wagner effect
(Francis & Cohen 1933). .,

2.3. Rotational mechanisms

The rotational mechanisms of paper IV offer a complete contrast to the quasi-steady
mechanism and Wagner effect. Strong vortex shedding must be produced by the high angular
velocity w of rotation during pronation and supination, and it may result in a net circulation
around the wings. This would generate circulation before translation, in contrast to its gradual


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org
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growth under the influence of the Wagner effect. The amount of circulation that can be created
should be proportional to w¢? for all of the rotational mechanisms: the fling (or peel), the partial
fling, the near fling, and isolated rotation (the flex mechanism). The mean angular velocity
@ during pronation and supination (paper III) can be used to define the rotational circulation

around a wing element as
I = ywc?, (13)

where the effectiveness of the different rotational mechanisms in producing circulation will be
reflected in the proportionality constant y, which may be intrepreted as a rotational lift coefficient.
It was argued in paper IV that several factors might help the circulation generated by the
rotational mechanisms to persist during the subsequent translation of the wings: (i) the delayed
stall of translation, (ii) the delayed stall of rotation, Kramer’s effect, (iii) the extra circulation
needed for wing rotation under the general formulation of the quasi-steady assumption, and
(iv) stabilization of the leading edge bubble by spanwise transport of vorticity (Maxworthy
1979). Thus the circulation around a wing element could be almost independent of the
positional angle ¢ during a half-stroke, and approximately given by equation (13).

The value of y may vary along the wing length according to the separation distance between
the elements of the wing pair during rotation. It will be assumed to be constant and equal to
a mean value 7, though, by analogy with the mean lift coefficient. The circulation of equation
(13) can then be expressed in terms of the non-dimensional parameters as

I =yonS/ R, (14)

where @ is the non-dimensional form of the mean angular velocity (= @/n, from paper III).
The maximum circulation occurs at the maximum chord (¢ = é,,,4), thus the non-dimensional
circulation is
. = */hax- (15)
1(¥) is equal to

o 20f,

iy =4 J d¢J. apdr =20 (16)

-1

Cmax cma,x

where 4 is the non-dimensional virtual mass of the wing, and 7, (v) is the non-dimensional first
moment of that mass (paper II). The mean lift is given by equation (10), and substitution of
I, d [ 1 -

max and /() yields L = 4p760n*® SR, (v) cos B/R cos . (17)
By using the definition of E we then solve for ¥ to produce the required mean lift over the

half-stroke: =
alf-stroke b LR cos B,

Y= 4pdn2@R*0f,(v) cos (18)

The mean lift demanded of the rotational mechanisms must be the same as that calculated
for the quasi-steady mechanism, so ¥ can also be expressed as a function of the mean lift

coefficient: _DRES) (dgzg/di)2 cos ﬁ’C—

v=E 32d¢f, (v) cos B

(19)

The parameter ¥ is to the rotational mechanisms what Cy, is to the quasi-steady mechanism.
Just as the estimates of Cy, will be compared with expected values to evaluate the feasibility
of the quasi-steady mechanism for hovering flight, the estimates of 7 will be tested against
expectations for the rotational mechanisms. The value of 7 admittedly conveys no intuitive ‘feel’
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LIFT AND POWER FOR HOVERING FLIGHT 151

for the amount of lift produced by the wings, however, as does the traditional lift coefficient.
Because of this it is probably informative to calculate Cy, even if the quasi-steady mechanism
clearly does not apply to a particular type of hovering, such as a clap and fling at either end
of the wingbeat.

3. EQUATIONS FOR POWER

The mechanical power requirements of flapping animal flight are traditionally divided into
four components, but it is widely assumed that one of these is negligible for hovering flight.
Because the flight velocity is zero in hovering, there should be no drag force on the body and
therefore no power expenditure against such a force; this power component is called the parasite
power Py, because the body drag is an unwelcome ‘parasite’ in the net force balance. The strong
induced velocity field in hovering may produce a downward drag force on the body, though,
which requires greater lift from the wings and thus incurs a parasite power in the form of an
enhanced induced power. Having raised this point I cannot resolve it, however, and so will
follow convention and ignore the parasite power requirement.

The total power expended in moving the wings against their aerodynamic forces was defined
in paper V as the product of the flapping velocity U and the  total’ wing drag — that component
of the net aerodynamic force which is parallel to U. There are two contributions to the total
drag: the profile drag, which results from the skin friction and pressure drag of the wing profile,
and the induced drag, which depends on the induced velocity of the wake vorticity shed in
association with circulatory lift. The total aerodynamic power can be estimated directly from
a blade-element analysis based on the flapping velocity if the total drag coefficient is measured
experimentally; this involves the extremely difficult task of re-creating accurately the pattern
of wake vorticity shed by the flapping wing. A more practicable alternative is to separate this
power into its two components, using the vortex theory of paper V to calculate the induced power
Bpq, and a blade-element analysis based on the relative velocity and the profile drag coefficient
Cp,pro to evaluate the profile power By,

Flapping flight also requires power to accelerate and decelerate the wings, P,... When
averaged over a half-stroke, this inertial power must be zero according to a mechanical definition
because there is no net acceleration of the wings. The flight muscles cannot exploit this nicety,
however, and must consume some metabolic energy when doing ‘negative’ work to decelerate
the wings. The use of elastic structures to store the kinetic energy of the oscillating wings
obviously reduces this power demand, and will be discussed in §4.2.5. and 4.2.6.

3.1. Induced power

The vortex theory of paper V estimates the induced power from the energy per unit time
imparted to the vortex wake. The mean specific induced power Py (= Pinq/mg) is given by

equation (V. 42) as -
Pqa=Pir(14+0+7), (20)

where the mean is taken over the period 1/nf of the lift impulse. P4 can be calculated separately
for the two half-strokes when both provide mass support (/= 2), but the values are unlikely
to differ significantly; equation (20) can thus be used for the mean value over the wingbeat

period. From equation (V. 15), the Rankine-Froude estimate of the induced power is

2w T

* — e ————————
Prie [p@dicosﬂ' (21)
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152 C.P.ELLINGTON
The temporal correction factor 7 for the wake periodicity is defined by equation (V. 44),
T=0.079 % (22)

where the spacing parameter s can be calculated from equation (3). The spatial correction factor
o is a function of the circulation profile during the wingbeat, and it is given in equation (V. 43)

o= %tj:fgfdfdé—l. (23)

as

Substituting equations (7) and (9), we can derive o for the quasi-steady lift mechanism;

A A 1
v 2ldd/dif j dtds
_ 0

o(C = —1, (24)
73(8)[(dg/di)*}E
Substituting equations (15) and (16) instead, the spatial correction factor for rotational
mechanisms is 1
J. o df
- 0
o(y) = v/ 20%%, (v) -1 (25)

The integrals in equations (24) and (25) can be interpreted as moment parameters of the wing
shape similar to those defined in paper II.

3.2. Profile power

The poor state of our knowledge concerning the profile drag forces on flapping wings was
emphasized in paper IV. Until the appropriate experimental studies are done we can only
assume, as did Weis-Fogh (1972, 1973), that the profile drag obeys the usual quasi-steady
relation (paper I). Thus the profile drag D}, on a flapping wing element will be taken as
that corresponding to steady motion at the same instantaneous linear velocity and attitude:

D;)ro = %,DCU% CD,pro- (26)

The choice of a suitable profile drag coeflicient Cp, pr, should be guided by the wing profile,
the angle of incidence, and the Reynolds number Re. Bearing in mind the scarcity of
experimental results for animal wings, though, the choice of Cp, j, will actually be little more
than an educated guess.

For the large angles of incidence used in hovering, Cp, ,;, is likely to be about 0.15-0.2 for
Re equal to 1500, and 0.5 for Re equal to 200 (paper IV). The profile drag coefficient tends
to vary inversely with the square root of the Reynolds number for Re less than several thousand,
and the following approximation can thus be derived for that range:

7

. Cp,pro ® VRe (27)

The Reynolds number of a wing element is proportional to ¢U, so it will vary along the wing
and throughout the cycle in hovering. According to a strict interpretation of the quasi-steady
assumption, values of Cp ,r, for the blade-element equation (26) should be determined as a
function of the instantaneous Re of the wing element. It is probably sufficient, however, to use
a mean value Cp p,, calculated from equation (27) for some representative mean value Re of


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

LIFT AND POWER FOR HOVERING FLIGHT 153

the Reynolds number. The definition of Re is quite arbitrary, but it should be biased somewhat

towards the upper end of the range of Re over the cycle, as this is where the greatest profile

drag occurs. I have therefore chosen a simple expression for Re, based on the mean wing chord
¢ and the mean wing tip velocity Uy;

T — @ _ 4DR?n

v vAR

(28)

where v is the kinematic viscosity for air.
The profile drag is parallel to the relative velocity, so the profile power Py, expended by
a wing element against this drag force must be Dy, U,. By integrating along the lengths of
the wing pair and averaging over the half-stroke, we can derive the total mean specific profile power
@; (= IE/mg) based on a mean profile drag coefficient;
_ pr*@PR37(S) |dg /d|? cos? B

* —
Ppro 16Pw cos? ﬂr CD,pro’ (29)

where 3(S) is the non-dimensional third moment of wing area (paper I1), and |dé/df|?is the
mean cube of the absolute value of the non-dimensional angular velocity (paper I1I). I have

compared the results from equation (29) with the mean specific profile power based on
instantaneous values of Cp, 1, as mentioned above, and they differ by less than 7 %,. This error
is very acceptable, and probably less than that incurred by the quasi-steady assumption itself,
so the use of a mean profile drag coefficient is quite justified.

In addition to the power requirement that it incurs, the profile drag may also be important
in the net force balance of hovering, particularly for animals that use an inclined stroke plane.
The quasi-steady blade-element equation (26) can be integrated along the wings and averaged
over a half-stroke to find the mean value of the magnitude of the profile drag force, —D;. Dividing
this by mg, we obtain a non-dimensional equation of the same form as L for the quasi-steady
lift mechanism: N PN

_ pr2®2R%73(S) (d/di)? cos? B c

ﬁpro 8[7w COS2 ﬂr D,pro» (30)
and ; S (31)

D pro CD ,pro

The profile drag force on a wing element is a vector, though, and the lateral component of
this force will be cancelled by that of the corresponding element on the opposite wing. The
mean profile drag force D over the half-stroke will therefore be parallel to the plane of bilateral
symmetry, and the magnitude of the mean value is given in non-dimensional form by

= pn2®2R*7(S) [(de/di)2 cos ¢] cos? B

D= . 32
8 pw C052 ﬂr CD,pro ( )

It proves useful to define a parameter § such that '
D = 8Dy, (33)

where 4 is the magnitude of the mean profile drag divided by the mean of the magnitude of
h . 7 A ] A
the profile drag 8 = [(d/d1)? cos §1/ @G /dP)" (34)

The value of ¢ is unlikely to be critically dependent on the details of the wing motion ¢(¢),
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which is not very different from simple harmonic motion for the insects of paper III. Instead
of calculating ¢ from the experimental results, it can therefore be estimated with small error
by using simple harmonic motion in equation (34):

fsinz (2rf) cos [@+1® cos (2ni)] df
s~ =2

1 (35)
I sin? (2nf) df
0

d is now a function of only the stroke angle @ and the mean positional angle ¢, and the results
from equation (35) are presented in figure 1. It is clear that & is not a very sensitive parameter,
and ranges between 0.72 and 0.91 for the insects in paper III, so the estimate from equation
(35) should be sufficiently accurate.

8
0.4} _
0.2l A
1 1 1 1 |
0 30 60 90 120 150 180
®/deg

Ficurk 1. The parameter &, which is the magnitude of the mean profile drag over a half-stroke divided by the mean
magnitude of the profile drag, plotted against the stroke angle @ for four values of the mean positional angle

¢. Results for negative values of ¢ are the same as for positive.

3.3. Inertial power

The inertial power required to accelerate the mass of a wing pair is given by the angular
velocity d¢/d¢ multiplied by the inertial torque I, (d%$/d#*), where [, is the moment of inertia
of the wing pair with respect to the wing bases. In Weis-Fogh’s (1972, 1973) analyses of hovering
flight, he assumed that the wings oscillated in simple harmonic motion and thus derived
analytical expressions for the derivatives of ¢ with respect to . Substantial errors can be
expected in calculating d?¢/ds* from ¢(f) measured experimentally, though, because of the
manner in which experimental errors compound when taking derivatives. It would therefore
be wise to limit our interests to the mean values of torque or power instead of attaching much
significance to any instantaneous values, as Weis-Fogh did with the maximum torque. The
temptation to discuss instantaneous values can be avoided by calculating the mean inertial
power from the work done in accelerating the wing pair up to its maximum angular velocity
during the first half of a half-stroke. This work is equal to the kinetic energy gained by the
wing pair, 3/, (d¢/d?)3 ., and dividing by the period 1/4nof acceleration, we obtain the mean
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inertial power 2n/, (d¢/dt)2,,,. The moment of inertia I, of the wing pair is equal to the second
moment of wing mass, m,, which is given by equations (II. 9) and (IT. 11) as

my = My, R? f; (m) = Pw SRalif%(m)> (36)

where m,, is the mass of the wing pair, 2(m) is the non-dimensional second moment, p, is the
wing density, and £ is the mean wing thickness divided by the wing length.

The wing chord is nearly perpendicular to the stroke plane during the rapid accelerations
and decelerations at either end of the wingbeat. The inertia of the wing will therefore be
increased by the mass of air which it accelerates, leading to an apparent increase in the wing
mass known as the virtual mass (paper II). For a wing element of spanwise width dr accelerated
normal to its chord, the virtual mass is equal to the mass of air in an imaginary circular cylinder
around the wing with the chord as the diameter: 1pnc2dr. The virtual mass v of the wing pair
is proportional to the mass of air in a cylinder of span 2R and diameter equal to the mean
chord ¢, and it is defined in equation (II. 13) as

v = 2pmR/ R, A (37)

where the proportionality constant # depends on the wing shape. The moment of inertia v, for
the virtual mass and its appropriate non-dimensional form #2(v) is given by equation (II. 16):

vy = vR27E (v) = LpmSERIFE (v). (38)

The power required to accelerate the virtual mass has not been evaluated previously for
flapping flight, but it will obey the same relation as the inertial power for the wing mass with
my replaced by v,. The total mean specific inertial power P¥,, required to accelerate the wing and
virtual masses during the first half of a half-stroke is therefore

Pa",‘cc = 2n(my+ Vs) (d¢/dt)r2na,x/mg

_ prP®* R (dg/dE)ax [ Py nof3(v)
- o [7% (m) + 52 ] (39)

The power demands during deceleration in the second half of the half-stroke will be discussed
in §4.2.4.

4. RESULTS AND DISCUSSION

Values for the morphological and kinematic parameters that appear in the equations of the
preceding section are scattered throughout papers II and III, and have been collected here
for quick reference. The nature of these parameters is such that they can be divided into two
distinct groups — gross parameters, which are presented in table 1, and shape parameters, which are
given in table 2. The gross morphological parameters offer what may be considered as a first
order description of the animal: the wing loading, the wing length, the aspect ratio, the mean
wing thickness (proportional to the wing mass), and the virtual mass of the wings. The gross
kinematic parameters similatly provide a rough characterization of the wing motion using the
stroke plane angle, the stroke angle, the wingbeat frequency, and the mean angular velocity
of pronation and supination. In contrast, the shape parameters are determined by the
normalized distributions of gross parameters, and furnish a second order description of the
hovering process. These include the non-dimensional moments of wing area, virtual mass and
wing mass, plus the first moment of & and the § moment of ¢4, for which I can offer no physical
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interpretation. The shape parameters for the wing motion are all functions of the absolute value
of the non-dimensional angular velocity d¢/df: the maximum value, the mean square and
mean cube, and the mean of (dgzg/ df)i.

Values of other parameters required for the numerical estimates of lift and power are as
follows: the density p is 1.23 kg m™2 and the kinematic viscosity v equals 1.46 X 1075 m? s~! for
air at 15 °C and standard atmospheric pressure, and the density of wing cuticle Pw is about

-3
1200 kg m~2 (paper II). a1, Lif

The average inertial forces from the wing mass and virtual mass must be zero over a half-stroke,
so they make no contribution to the net force balance in hovering. The mean aerodynamic
force, comprised of the mean circulatory lift L and the mean profile drag D, must therefore
be vertical and equal to mg when averaged over a wingbeat cycle. By using the subscripts d
and u to denote the downstroke and upstroke respectively, and by defining the positive
directions of the mean forces as illustrated in figure 2, the following two equations can be derived
from the net force balance: the requirement of a net zero horizontal force gives

le sin ﬂr,d_ﬁd cos ﬂr,d+l:—u sin ﬂr,u +5u cos ﬂr,u =0, (40)
and for the vertical force to balance the animal’s mass
Ly cos Br g+ Dy sin fir g+ Ly c05 iy — Dy sin fr, = 2, (41)

where D7d =4 m and DTu =0 DT,;,:. These two equations can be used to determine fd and
Z:, and hence the mean lift coefficient Cy, and the value of ¥ on the half-strokes. Different
approximations can be employed depending on whether the stroke plane is horizontal or
inclined, so the corresponding groups of insects will be treated separately.

4.1.1. Lift coefficients

(a) Horizontal stroke plane. Because of kinematic symmetry, we should expect nearly equal
weight support on the half-strokes for animals hovering with a horizontal stroke plane. Values
of B, for this group have therefore been calculated with /= 2, and they are presented in table 3.
It is evident that B, differs but little from the stroke plane angle #: typically g, is 10° less
than £ on the downstroke and 10° greater on the upstroke. This small difference indicates that
the relative velocity is primarily governed by the flapping velocity, and that the irregular
helicoidal vortex sheet produced by circulatory lift is only slightly developed. Thus a planar
representation of this vortex sheet in the relative stroke plane is quite justified (paper V).

The mean vertical force is derived almost entirely from lift for animals using a horizontal
stroke plane, as can be seen in figure 2a for # = 0 and B, = +10°. The lift force, which is
perpendicular to the relative stroke plane, is tilted away from the vertical by only 10°; thus
the difference between the magnitude of the mean lift and its vertical component, L cos £, is
less than 29,. A small component of the mean profile drag, D sin S, subtracts from the mean
vertical force, but this will be less than 4 %, for reasonable ratios of lift to profile drag, which will
be, say, 4 at Re around 1000. For a perfectly horizontal stroke plane the mean lift over the
cycle will therefore be underestimated by less than 6%, if we simply equate it to mg and let g,
equal zero, reducing equation (41) to [:d+lj—u = 2. This approximation will be used for all of
the insects in table 3 even though the stroke plane angle 8 equals zero in only one case. £ is
typically small enough that the error of the approximation is not substantially increased, so
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LIFT AND POWERFOR HOVERING FLIGHT 159

it will be assumed that £ and g, are zero for the purposes of calculation. In any case, # was
affected by the almost continuous manoeuvres inside the flight chamber, and the value during
‘true’ hovering may not have been reported in paper III. This is certainly true for the ladybird
Coccinella 7-punctata (LBO4), which is included in the horizontal stroke plane group even though

TABLE 3. C AND FOR INSECTS WITH A HORIZONTAL STROKE PLANE
r YL
Values of 8. are given separately for the downstroke and upstroke, but C;, and ¥ refer to both half-strokes.
r g P Y P L Y

D ﬂr,d h C—L -

deg deg Y
LB04 8 27 1.71 0.84
CFo02 2 19 1.24 0.43
CF04 -2 14 0.97 0.41
HF07 —13 9 1.17 0.41
DFo01 -9 9 0.95 0.46
(figure 12, paper III)
DFo1 —1 17 0.92 0.36
(figure 13, paper III)
HBO1 —20 -1 1.08 0.58
BB04 —17 2 1.10 0.53
BB08 —4 15 1.13 0.61
(a)
L L
D — —EW]
U 7
upstroke downstroke

(b) —
7 L

L
B : 5
; /ﬁ S

Ficure 2. Directions of the aerodynamic force components on the downstroke and upstroke for
(a) a horizontal stroke plane and (b) an inclined one.

f is 18°. In that film sequence the ladybird was steadily accelerating forwards and upwards,
and the large value of # accounted for the forward acceleration. As explained in paper III,
this sequence can be used to illustrate hovering by considering a more horizontal stroke plane
and reducing f to a value characteristic of that group.

The mean lift coefficient on the downstroke must equal that on the upstroke if the value of
Cy, is to indicate the minimum lift coefficient compatible with hovering. Cy, can then be
calculated from equation (12) with L =1 and with the mean of (dd/dF)? taken over both
halfstrokes; this mean value is also used in equation (19) for 7. Cy, and ¥ for the insects hovering
with a horizontal stroke plane are presented in table 3, and will be discussed in §4.1.2. ().

(b) Inclined stroke plane. Two of the film sequences from paper I1I show very precise hovering
with an inclined stroke plane by the hover-fly Episyrphus balteatus (HF08). The stroke plane
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angles are 21° and 32°, but there is no question of demoting the sequence with 21° to the
horizontal stroke plane group; it provides an excellent view of ‘true’ hovering with no
detectable accelerations. With the notable exception of U. M. Norberg (1976), studies on
animals hovering with an inclined stroke plane have previously been hampered by incomplete
data (Weis-Fogh 1973; R. A. Norberg 1975; U. M. Norberg 1975), so the two hover-fly
sequences will receive considerable attention.

If the half-strokes generate nearly equal weight support for the hover-fly, 8, can be estimated
as before with = 2: the values of B, 4 and S, , are then 0° and 37° respectively for g = 21°,
and 13° and 46° for § = 32°. The differences between £, and £ are more pronounced than
for a horizontal stroke plane, about 20° on the downstroke and 15° on the upstroke. This is
owing to a higher ratio of the induced velocity to the flapping velocity. The resulting directions
of the mean force components are quite asymmetrical for the half-strokes, as shown in figure
25. Downstroke lift is nearly vertical and thus suitably directed for weight support, but any
lift on the upstroke produces a large horizontal thrust that would have to be balanced by an
enhanced downstroke profile drag.

An extreme alternative is to minimize the upstroke lift and rely solely on the downstroke
for weight support. If that is the case, then S, for the downstroke should be calculated from
equation (4) with s based on f = 1. A different procedure is required for the upstroke, however,
because equation (4) is only valid for half-strokes that provide weight support. Equation (4)
is derived from equation (2), which assumes a mean induced velocity of Pg(1+7) during the
half-stroke, where 7 reflects the increase over the steady Rankine-Froude downwash caused
by the impulsive vertical forces. This increase is presumably absent for a half-stroke not involved
in weight support, so equation (2) should be used with 7 = 0 to estimate f, for the upstroke.
Values of ;. q and ;. , are then — 7° and 36° respectively for # = 21°, and 5° and 44° for § = 32°

When we consider these two extreme cases, we see that the orientation of the relative stroke
plane is not greatly influenced by the amount of weight support on the upstroke. The mean
lift and profile drag on the downstroke are approximately vertical and horizontal, as for the
horizontal stroke plane group. The directions of the mean force components on the upstroke,
though, are always ill-suited for weight support; the mean profile drag contributes a substantial
negative vertical force, and the mean lift has a large horizontal thrust component. However,
a vertical force on the upstroke may be crucial for the hover-flies if the downstroke cannot
generate sufficient lift.

The upstroke can, in fact, provide any amount of lift up to the limits of C, pax and Ymax
as long as downstroke drag can cancel the resulting thrust. Thus it is clear that the net force
balance for an inclined stroke plane may not be satisfied by unique values of the force
coefficients, but the range of values can be investigated in the following manner. Using
equations (40) and (41) of the force balance, plus equations (11), (30) and (33), we can derive

o = 1 [ 16 py, cos fr u
BT I+ tan g, , tan B; o) Lpn?®2R2% (S) (dg/di)? cost
— cosBru~—
+4 (tan :Br,u'— tan ﬂr,d) CD,pro,u _53—:3:—:1 CL,d:|’ (42)
tan f; , €os fram— €08 frami—  tanfra—
and Cp,pro,a = Py ;(:S Beu . dCL'"+cos ﬂi,u Cp,prout S - Cy,a- (43)
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The surprising result is that the mean force coefficients on the upstroke and the downstroke
are all related by simple linear functions. The mean rotational lift coefficient on the downstroke
Y4 can also be found as a linear function of 6; from equation (19), and the value on the
upstroke is simply given by the ratio
Yu _ _Ci,ﬂﬂ_rﬂ_ (44)
Ya  Cpacos fra

The range of coefficients for the two hover-fly sequences will now be calculated. The values
of 8 obtained from equation (35) are 0.94 for # = 21° and 0.89 for £ = 32°. Judging from the
previous estimates, B, 4 and B, , are likely to vary little with the amount of weight support
provided by the upstroke; it will be shown that the upstroke probably supplies only a small
force, though, so the estimates based on zero upstroke support will be used. The difference
between the means of (d$/d7)? on the half-strokes is within experimental error for the two
sequences, and thus the mean value over the cycle can be used in equation (42). For the
sequence with # = 21°, the equations then reduce to

Cpy=448+0.88Cp prou—0.91Cp 4, (45)

Cp.proa = 4.24+2.06 Cp, 0w —0.99Cy 4, (46)

¥4 = 0.22Cy, 4, (47)

and Vo= 0.80+0.16 Cp, pro w—0.17 Cy, 4. (48)
For the sequence with g = 32°,

' CLu=3.53+0.72Cp prou—0.67Cy 4, (49)

Cp.pro.a = 5.33+2.47Cp, pro.u—0.91Cy, 4, (50)

¥4 = 0.21Cy, g4, (51)

and ¥u=0.54+0.11Cp prou—0.11Cy 4. (52)

The mean force coefficients have been expressed in terms of the mean profile drag coefficient
on the upstroke because it can be assigned a fairly reliable range of values from the quasi-steady

profile drag assumption. Cp, ,r, , cannot be less than the minimum drag coefficient of the profile,
Cp,mins Which is about 0.20 for the two sequences based on equation (IV. 9) with Re from
equation (28). The maximum quasi-steady drag coefficient Cp, 1,4 of the wings must be similar
to that of a flat plate with the chord perpendicular to its motion, around 1.2 for aspect ratios

less than 10 at Re near 10® (Fage & Johansen 1927; Hoerner 1958). Cy, ,, and Cp ,r0 g are thus
plotted against Cy, 4 for # = 21° and g = 32° in figure 3 and figure 4, respectively, using Cp min

and Cp pmay to define the limits of Cp pro -

The minimum mean coefficient required for hovering occurs when C—L; = —C:.; as for the
horizontal stroke plane group. Depending on the assumed value of Cp pr, ,, this lift coefficient
ranges between 2.44 and 2.90 for £ = 21°, and 2.20 and 2.63 for # = 32°. However, the mean
profile drag coefficient on the downstroke needed to balance the large horizontal thrust from
the upstroke lift is between 2.23 and 3.84 for # = 21°, and 3.82 and 5.90 for # = 32°. These
values are far too large for the quasi-steady profile drag assumption and, unless this assumption
is rejected, we must conclude that the mean lift coefficient cannot be the same on the downstroke
and upstroke.

11 Vol. 305. B
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To reduce the value of Cp, 4.4 to a reasonable range the upstroke lift and hence m must
be decreased, and Cy, 4 will then increase correspondingly. On imposing the restrictions of
Cp,min and Cp max on Cp pr0 g We obtain the small shaded area in the bottom right-hand
corner of each figure, which represents the limits from the quasi-steady drag assumption. The

minimum value of Cy, 4 consistent with that assumption is thus determined by Cp 1o q =
Cp,max and Cp pro,u = Cp, min, giving a value of 3.48 for # = 21° and 5.08 for # = 32°. The
result for # = 32° is particularly interesting because the corresponding value of Cy, , is quite

CD,pro,d

CL,u

CL,d

Ficure 3. Mean force coefficients for the hover-fly (HF08) using an inclined stroke plane with g = 21°. m and
Cp,pro,a are shown by dashed and solid lines, respectively, and are linear functions of both ?J—I:; and Cp pro, -
According to the quasi-steady profile drag assumption, Cp r,, must lie between Cp i, and Cp ey the
left-hand line of each pair represents the limit imposed by Cp, i, and the right-hand line indicates Cp, 0y
The shaded area in the bottom corner is obtained by applying these limits to Cp ., 4 as well. The mean
rotational lift coefficient on the downstroke y4 depends on Cy, 4 alone, as shown on the upper axis of the figure.

FiGure 4. Mean force coefficients for the hover-fly (HF08) using an inclined stroke plane g = 32°. Construction
of the diagram is identical to figure 3.

small, about 0.27; the mean lift coefficient on the downstroke is therefore a minimum when
the upstroke generates but little force. By reducing m below 0.27, m can be decreased
substantially from Cp pax Wwith only a small increase in Cp, 4, but I do not think this is
practicable: the mean profile drag coefficient on the downstroke must be close to the maximum
value if the wings are to produce a lift coefficient around 5.

For the sequence with # = 21° the minimum value of m consistent with the drag
assumption corresponds to m equal to 1.49. The mean profile drag coefficient on the upstroke
must be greater than Cp iy if that much lift is produced, however, and the value of 0.29

predicted by equation (27) is probably a better estimate for Cp ;0 - If it is accepted that

Cb pro,a 1s about 1.2 when Cy 4 equals 5.08 for # = 32°, we can assume the same ratio of
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lift to profile drag on the downstroke when # = 21°. Thus Cp ;4 q is approximately } Cy, 4

and, on substituting this into equation (46), we find that m 15 3.93, Cp, yis 1.16, and Cp pr0.9
is 0.94 when Cp pp, , €quals 0.29.

These solutions to the net force balance for the two hover-fly sequences seem the most
plausible according to the quasi-steady profile drag assumption, and are summarized in table 4.
The drag assumption has not been verified experimentally, though, and the results must be
treated with caution. Even if it is verified in the future, it should be noted that the estimation
of Cp, pro,a from the net force balance is quite prone to error because of the m tan 8, 4 term
in equation (43). A small change in the relative stroke plane angle on the downstroke, which
is only given approximately by equation (4), easily leads to substantial differences in the
horizontal component of the downstroke lift and thus affects the mean profile drag coefficient.

TABLE 4. FORCE COEFFICIENTS FOR AN INCLINED STROKE PLANE

(These estimates for the two hover-fly (HF08) sequences showing an inclined stroke plane (figures 10 and 11,
paper III) are based on assumed limits to the quasi-steady profile drag.)

p£/deg 21 32
Br.a/deg -1 5
Br.u/deg 36 44
CrLq 3.93 5.08
Cru 1.16 0.27
Cppro.d 0.94 1.2
Cb.pro.u 0.29 0.20
Ya 0.86 1.07
Va 0.21 0.04

4.1.2. Aerodynamic mechanisms

(a) Inclined stroke plane. In spite of these uncertainties concerning the profile drag, we can
definitely conclude that the quasi-steady mechanism of /ift production cannot meet the
requirements of the hover-fly using an inclined stroke plane. Cy, on the downstroke is likely
to be about 3.9 for # = 21° and 5.1 for § = 32°, and these values do not drop below 2.4 and
2.2 respectively even if Cy, is taken as constant over the cycle by relaxing the upper limit to
Cb. pro,a- For the quasi-steady explanation of lift to be valid, the mean lift coefficient must not
exceed the maximum value Cy, j,x measured under steady-state conditions. Experimental
values of Cy, yax were discussed in papers I and IV, and they range from 0.8 to 1.3 for insect
wings. Thus the quasi-steady mechanism is insufficient even as an approximation to the
aerodynamic forces for the hover-fly, as predicted by Weis-Fogh (1973), and unsteady effects
must be involved.

The pied flycatcher Ficedula hypoleuca and the long-eared bat Plecotus auritus also hover using
an inclined stroke plane with f# near 30° and their aerodynamics have been studied by
U. M. Norberg (1975, 1976). She used the traditional Rankine-Froude theory with a disc area
equal to TR? to calculate the induced velocity, which can seriously under-estimate the value
compared with the new vortex theory of paper V. Some of my calculations for these animals
(Ellington 1980) were based on her estimates, and will be modified here to bring them up to
date. When the vortex theory is used, B, on the downstroke is — 12° for Ficedula and 9° for
Plecotus. Thus the mean lift on the downstroke must be largely responsible for weight support,

I1-2
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as with the hover-fly, and a rough estimate of Cy, 4 can be obtained readily from equation (12)
with L = 2 and f, as above. m is then 6.0 for Ficedula and 4.3 for Plecotus, which are similar
to the values Norberg calculated, and far too large for the quasi-steady lift mechanism. It should
be noted that the morphological and kinematic data for Ficedula were from different animals,
and the rather high value of C, 4 may be because of this.

‘The conclusion that quasi-steady aerodynamics cannot explain the lift forces required by the
hover-fly is also supported by kinematic observations. The geometrical angle of attack « of the
wings is relatively constant for most of each half-stroke, and values at 0.7 R obtained by visual
estimation were presented in paper III; for f = 21°, « is 35-40° over most of the downstroke
and upstroke, and for # = 32° it is 40-45° on the downstroke and 35-40° on the upstroke. The
effective angle of attack a. measured with respect to the relative velocity is « — (8— f,) on the
downstroke and a+ (f—pf,) on the upstroke, and this gives values of about 10° and 22°
respectively for # = 21°, and 15° and 25° for # = 32°. According to a quasi-steady explanation,
these observations predict that the mean lift and profile drag on the upstroke are greater than
on the downstroke — an impossible conclusion in light of the net force balance.

Which unsteady mechanism is the most likely candidate for providing the excessive lift
required on the downstroke? The delayed stall of translation is the only conventional unsteady
mechanism that can produce circulatory lift greater than the maximum value for steady motion,
and it seemed a promising candidate in paper IV. However, the effective angles of attack
observed for the hover-fly are probably too small for delayed stall to be useful. In any case,
delayed stall would still produce greater forces on the upstroke and hence violate the net force
balance.

It is very interesting to compare these two sequences of HF08 with that of another hover-fly
(HFO07), which hovered with a horizontal stroke plane. Together, they provide a series with
B equal to —2°, 21° and 32°, and so should reveal any kinematic differences between the types
of hovering. The angle of attack is slightly reduced for the horizontal stroke plane, about 30-35°
on both half-strokes, giving an effective angle of attack around 21° on the downstroke and
upstroke. The mean lift coefficient required for HF07 is 1.17 (table 3); this is within the expected
limits of Cy, ymax if the Wagner effect is not too serious. Thus HF07 needs about §—; of the lift
required for the HFO08 sequences, but the effective angles of incidence are not very different.
It seems most improbable that any lift mechanism depending primarily on the effective angle
of attack of the translating wings can explain these results.

If the aerodynamic differences between the hover-fly sequences cannot be accounted for in
the translational phases of the cycle, we must turn our hopes to the rotational mechanisms,
which may create circulation before translation and thus avoid the usual limits of Cy, pax. The
mean rotational lift coefficient ¥ for HF07 is 0.41 on both half-strokes; for HF08 with g = 21°
itis likely to be 0.86 on the downstroke and 0.21 on the upstroke, and for # = 32° the respective
values are 1.07 and 0.04 (table 4). However, we have no concrete values of y,,,, to compare
these with. The maximum value of 7y should depend on the conditions of wing rotation, such
as the separation distance between the opposing wings and the effective axis of rotation relative
to the air. The fling and peel mechanisms probably generate the most circulation, with y about
1.9 based on Maxworthy’s (1979) experimental investigation of the fling and the inviscid
analysis of the peel by Williamson & Ellington (paper I'V). These two mechanisms could easily
supply more lift than is needed by the hover-fly, but its wings rotate in isolation instead of close
proximity.

The aerodynamic events during isolated rotation were discussed in paper IV, but there are
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many uncertainties at present. The two major problems are (i) how much vorticity is created
by the rotating wing, and (ii) how much of this vorticity remains ‘bound’ to the wing for the
subsequent half-stroke, providing the circulation required for lift. Assuming that the wing
rotates about the } chord axis, equation (IV. 10) indicates that y could be about 1.6. This
circulation is of the wrong sense to generate the desired lift on the following half-stroke, but
an equal amount of vorticity of the correct sense must be shed as a ‘starting vortex’ for the
rotational motion. If that starting vorticity can be shed near the leading edge, the roles of bound
and shed vorticity may be reversed on the subsequent half-stroke; the shed vorticity of rotation
then becomes the bound circulation for lift. This mechanism is highly speculative, of course,
but it does provide a means of using the strong vorticity that must be created during rotation.
We should not expect vy for the subsequent half-stroke to be as high as 1.6, because the spatial
partitioning of the rotational vorticity cannot be perfect, but if the wing can recover only 2
of the ‘correct’ vorticity shed during rotation then it would satisfy the demands of the hover-fly
downstroke with g = 32°.

To recover the shed vorticity it is essential that the leading edge rotates faster with respect
to the air than the trailing edge, concentrating the shed vorticity near the leading edge. The
hover-fly sequences are particularly interesting in view of this, because pronation is delayed
and overlaps the beginning of the downstroke as the stroke plane becomes more inclined (figures
9, 10 and 11 in paper III); in fact, this is the most striking kinematic difference between the
horizontal and inclined stroke planes apart from the gross changes in the stroke angle @. Given
the same wing flexing, this delay causes the trailing edge to become stationary with respect
to the air at an earlier stage of rotation because of the additional motion from translation. Thus
the phase shift may partition the rotational vorticity between the half-strokes, as discussed in
paper IV : more vorticity is shed at the leading edge as pronation is delayed, creating a larger
downstroke circulation.

(b) Horizontal stroke plane. Although the quasi-steady lift mechanism does not work for HF08,
it cannot be dismissed for HF07 using a horizontal stroke plane, where Cy, is about 1.2. What
about the other insects that hover with a horizontal stroke plane? With only two exceptions,
Cy, for these insects (table 3) range from 0.9 to 1.1, which is similar to the range calculated
by Weis-Fogh (1973). These values are probably small enough to be accounted for by the
quasi-steady assumption even allowing for the Wagner effect. However, the ladybird Coccinella
7-punctata (LBO4) requires Cy, equal to 1.7, which is greater than any value of Cp, max
measured for insect wings, and the crane-fly Tipula obsoleta (CF02) needs 1.2, which is over
40 9, above Cy, 1,x determined for another tipulid 7'. oleracea (Nachtigall 1977). Even allowing
for experimental errors, these values must contradict the quasi-steady assumption when the
Wagner effect is taken into account, and thus two insects that hover with a horizontal stroke
plane rely on unsteady effects. '

The effective angle of attack a, for the ladybird is about 25° on both half-strokes. The same
value is found for the drone-fly Eristalis (DFO1) in figure 13 of paper III, the honey bee Apis
mellifera (HBO1), and the bumble bees Bombus hortorum (BB04) and B. lucorum (BB08). It is
therefore unlikely that the excessive lift coeflicient for the ladybird is due to delayed stall at
an increased angle of attack. For the crane-fly (CF02) «, is 16° on the downstroke and 27°
on the upstroke, compared with 27° and 37° respectively for the other crane-fly T. paludosa
(CF04). Any mechanism based on the effective angle of attack would thus predict a higher Cy,
for CF04 instead of the lower one found.

As for the hover-fly using an inclined stroke plane, we are again forced to turn to the
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rotational phases of the wingbeat to explain the extra lift of the ladybird and crane-fly (CF02).
The wings of the ladybird are in close proximity while rotating: during pronation the trailing
edges actually touch in the basal wing area and are separated by about § of the mean chord
¢ near the wing tip, but during supination they are slightly more separated and do not touch.
Thus the ladybird performs a ‘near fling’ along most of the wing length, with a ‘partial fling’
in the basal area during pronation. It was argued in paper IV that these variations on the fling
should also create circulation during rotation, but with a reduced effectiveness. The mean
rotational lift coeflicient for the ladybird is 0.84; this allows for a generous reduction of the
1.9 available from a complete fling or peel.

The crane-fly (CF02) wings are separated by about §¢ near the wing base in pronation, but
the separation is greater than the mean chord for distal wing areas. Thus the events during
pronation should be those of a near fling for basal wing areas, merging into isolated rotation
with little wing interference for the distal half of the wing. The wings are completely separated
in supination, though, so any net circulation created by pronation and supination should be
primarily due to isolated rotation. A pronounced flexion is clearly evident along the chord as
the wings rotate (figures 18 and 256 in paper III), which makes the trailing edge staticnary with
respect to the air in the latter half of rotation. As with delayed pronation for the hover-fly with
an inclined stroke plane, this ‘flex mechanism’ (paper IV) might partition the vorticity shed
during rotation such that some of it can be recovered for the following half-stroke. Indeed, the
wing flexing also occurs for the hover-fly, and should increase the effectiveness of delayed
pronation in partitioning the rotational vorticity. If the flex mechanism is feasible its mean
rotational coefficient should be less than the other cases considered, but we have no idea what
v might be. CF02 requires ¥ equal to 0.43, only } of the vorticity likely to be shed during isolated

‘rotation, so we are not really asking for much.

Even a tentative rejection of the quasi-steady mechanism for CF02 leads to a striking
conclusion for the remaining insects in table 3 that hover with a horizontal stroke plane. Their
values of Cy, are possibly within the limits of Cy, pax, but I cannot find any differences between
their kinematics and those of CF02 that would substantially influence the force coefficients.
If the kinematics of the honey bee, bumble bees, drone-fly, hover-fly (HF07) and the other
crane-fly (CF04) are basically the same as crane-fly CF02, we cannot accept the quasi-steady
mechanism for them while rejecting it for CF02. This leads to the opposite conclusion from
Weis-Fogh’s, and does not support his claim that ‘most insects perform normal hovering [i.e.
with a horizontal stroke plane] on the basis of the well-established principles of steady-state
flow’, (Weis-Fogh 1973). It seems more likely that they use a rotational mechanism similar
to that of CF02; indeed, values of ¥ for the remaining insects of table 3 are in a plausible
range of 0.4-0.6. CF02 falls in the lower end of this range, in fact, and therefore is not
exceptional if it uses a rotational lift mechanism instead of a quasi-steady one. Flexion of the
wing during rotation is similar for CF02 and the other insects, so it would be appropriate to
suggest that the flex mechanism operates for them as well.

Maxworthy (1981) has published a concise review of the fluid dynamics of insect flight,
in which the importance of rotational effects also figure prominently in his discussion of
hovering. Based on his earlier experimental studies (Maxworthy 1979; see paper IV), he
concludes that unsteady effects must be substantial for isolated wing rotation. He found that
the vorticity shed as a flat wing model slows down and rotates, interacts with the wing at the
beginning of the following half-stroke, and forms a large leading edge bubble that provides
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circulatory lift earlier than one would expect from the Wagner effect combined with the
quasi-steady mechanism. Details of the vortex shedding could not be determined from that
study, but it is clear that something akin to my isolated rotation must be happening. Savage
¢t al. (19779) also found strong vortex shedding during rotation of a flat wing model although,
as discussed in paper IV, this vorticity could not be ‘recovered’ for the following half-stroke
because of the effective axis of rotation they used and the lack of coupling between the rotational
and translation phases.

These two experimental studies certainly ease the path towards the conclusion that most,
if not all, hovering animals rely primarily on rotational lift mechanisms instead of quasi-steady
aerodynamics, as Weis-Fogh claimed. In fact, one animal can even be found in Weis-Fogh’s
(1972, 1973) studies that violates his conclusion: the hummingbird Amazilia, which was taken
as a typical example of hormal hovering. He calculated a mean lift coefficient of 1.8 for Amazilia,
and decided that this might be possible under quasi-steady conditions. I questioned that
decision in paper I, however, based on the available measurements of CL, max for bird wings.
By using the analysis of Amazilia’s wing shape from paper II, which is more accurate than
Weis-Fogh’s approximate method, I have recalculated Cy, as 2.3 from equation (12) and his
kinematic data. This value is much larger than the measurements of CL max and clearly violates
the quasi-steady assumption. As with the crane-fly CF02, if but one member of a homogeneous

group disproves the assumption, then we must reject it for that entire group of animals using
normal hovering.

power
input

-

power
heat output
(mechanical)

inertial aerodynamic
power power

profile [ |induced| [parasite|
power power power

Ficure 5. Pathway for the power expenditure in flapping flight. The mechanical power output of the flight muscles,
composed of the inertial power and the components of the aerodynamic power, plus the heat produced must
equal the metabolic power input. From Casey (1981 a)

4.2. Power

Investigations of the lift mechanisms are vital to our understanding of how animals fly, but
many biologists are more directly concerned with the energetic costs of flight. The power budget
for a flying animal is best appreciated in diagrammatic form, as shown in figure 5. Some of
the metabolic power input to the flight muscles appears as a mechanical power output, but
most of it is degraded into heat by muscular inefficiency. The mechanical power output is
divided into any inertial power required to accelerate and decelerate the wings, and the total
aerodynamic power needed to move the wings and the body through the air. The aerodynamic
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power in turn represents the sum of three distinct components: induced, profile and parasite
powers. As already mentioned, the parasite power required to move the body through the air
is commonly neglected for hovering flight.

Starting at the bottom of the figure, the individual power components will be investigated
using the equations for power derived earlier. These components will then be combined with
due regard to the influence of elastic storage on inertial power, and the resulting mechanical
power output compared with measured metabolic rates to estimate the efficiency of the flight
muscles. As before, it is assumed that £ and S, equal zero for the horizontal stroke plane group.

4.2.1. Mean induced power

The mean specific induced power Pf 4 is readily calculated from equations (20)—(25). When
estimating the spacing parameter s, we again let fequal 2 and 1 for the horizontal and inclined
stroke planes respectively. This will slightly overestimate the temporal correction factor 7 for
HF08 with # = 21°, because the upstroke does provide a little weight support, but integer values
of f are required for the vortex theory. For the horizontal stroke plane group, the mean value
of o (Cy) over the wingbeat cycle is obtained by using (d$/d?)? and |d¢/di averaged over the
cycle in equation (24). These functions should be averaged only over the supporting downstroke
for HF08, but the means over the half-strokes are not significantly different from those over
the cycle; mean values over the cycle can therefore be used for the downstroke in equation
(24). The values of o, T and P¥ 4 presented in table 5 are thus mean values over the cycle.

The striking result, predicted from momentum arguments in paper V, is that the spatial
correction factor o is quite insensitive to the aerodynamic mechanism generating lift. The value
of o for the rotational mechanisms, o (y), is generally a small percentage higher than for the
quasi-steady mechanism, o(Cy,), but both require only about 109, more induced power than
the simple Rankine-Froude estimate. The temporal correction factor 7 is also small for the
horizontal stroke plane group, indicating that the power losses caused by wake periodicity are
about 5%, of the power required for a perfectly steady Rankine-Froude jet. However, these
losses are substantial for the hover-fly using an inclined stroke plane: about 509. This is
because the wake periodicity is markedly increased when weight support is provided by the
downstroke alone.

Since the value of o is small and insensitive, the calculated mean specific induced power over
the cycle is virtually independent of the lift mechanism assumed: the difference between the
two estimates of P is typically less than 2 9,. Thus the uncertainties about the lift mechanism
actually employed by hovering animals will not be reflected in the metabolic power
requirements; this should please biologists more concerned with the energetics of flight rather
than the aerodynamics. Indeed, the following rule-of-thumb predicts P¥ 4 to within a small
percentage for the insects using a horizontal stroke plane: P{ 4 equals 1.15 times the simple
Rankine-Froude estimate P§p.

The mean specific induced power over the cycle varies from 0.4 to 1.7 W N~ for the insects
in table 5. This range is slightly larger than would be predicted from the wing loading p,,,
because the aspect ratio tends to decrease as p,, increases. Insects such as the crane-flies have
a very low wing loading and disproportionately long wings; this reduces their disc loading
(paper V) and hence their specific induced power. The largest values of P¥ 4 occur for the
honey bee and bumble bees, which have a high wing loading and low aspect ratio, and for
the hover-fly paying a penalty in 7 for its use of an inclined stroke plane.
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Weis-Fogh (1972, 1973) did not explicitly estimate the induced power for his animals, but
the results of table 5 can be compared with those of Rayner (1979). For animals using a
horizontal stroke plane, Rayner suggests that P} 4 is approximately given by 1.04 P&p in my

terminology. The ‘tip losses’ due to wake periodicity are ignored in this approximation, so his
correction to the Rankine-Froude estimate for the circulation profile during the wingbeat is
about half my value (o ~ 0.1). The ‘impulse’ correction he employed was criticized on
conceptual grounds in paper V, however, and it should at first sight overestimate the total
specific induced power by up to 30 %,. The reason it does not do so is because the initial rolled-up
vortex ring area is also overestimated in his approximation, and these two errors cancel out.
He neglected the changes in circulation with angular position of the wings and the reduced
circulation near the wing base, both of which decrease the mean circulatory lift, and he
concluded that the initial rolled-up ring area was about 92 %, of the area swept by the wings.
If those factors are taken into account, my calculations from equations (9) and (16) show that
this area is closer to 60 %,.

Rayner offers a similar correction that includes the effects of wake periodicity for animals
using an inclined stroke plane. His term representing the spatial correction factor again
yields a reasonable value (0.06) because of the same two overestimates mentioned above.
However, his correction for wake periodicity is based on an initial ratio of the vortex core radius
to the vortex ring radius of 0.17, and it was shown in paper V that such a large value violates
momentum considerations in the limit of vanishing wake periodicity. This large core radius
should underestimate the power required for a periodic wake, and his approximation gives P¥ 4
equal to 1.19 Py for HF08 with # = 32°, compared with my estimate of 1.63 PXp

4.2.2. Mean profile power

To calculate the mean specific profile power, we must first determine the mean Reynolds
number from equation (28) and then select a suitable mean profile drag coefficient from
equation (27). This coefficient is taken as constant during the wingbeat for insects with a
horizontal stroke plane, so the mean of |d@/d|® over the cycle is used in equation (29) to give
P}, over the cycle. For the hover-fly HF08 the mean profile drag coefficients on the downstroke
and upstroke have already been calculated in table 4. The mean of |dg/d#[? is not significantly
different on the half-strokes for HF08, and the mean value over the cycle can be used in equation
(29). P, is then 1.03 W N~ on the downstroke and 0.59 W N1 on the upstroke for § = 21°,
giving a mean value of 0.81 W N7! over the cycle; for # = 32° the values are 1.22, 0.54 and
0.88, respectively.

Table 5 includes the values of Re, the mean profile drag coefficient, and Iﬁ over the cycle.
The mean specific profile power ranges from 0.5 to 1.2 W N™1, and it is clearly of the same
magnitude as P¥ 4 for a given insect. The results for HF08 are particularly interesting, because
they reveal that the exceptionally large profile drag coefficients required on the downstroke
of an inclined stroke plane do not incur a serious penalty in profile power. Indeed, P—l’f,—o on
the downstroke for HFO08 is not much larger than for HF07 using a horizontal stroke plane,
and F?‘,; over the cycle is actually less. The relative velocity is considerably reduced on the
downstroke of HF08 because of a smaller @ and larger £, and this reduction offsets the big

increase in P§,, expected from the large profile drag coefficient.
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4.2.3. Aerodynamic efficiency

The mean specific aerodynamic power P¥ over the cycle is ¢ is simply the sum of P¥ 4 and PX . P}
By taking values from table 5, and by using the mean of P¥; calculated for quasi-steady and
rotational mechanisms, the aerodynamic power ranges from 1.0 to 2.7 W N~1, These estimates
are similar to those of Weis-Fogh (1973), and three insects can be compared directly. For the
crane-fly Tipula, the drone-fly Eristalis, and the honey bee Apis my values are 1.3, 2.5, and
2.8 W N7 respectively, while his are 2.1, 2.3 and 2.1 W N-1, This agreement is somewhat
fortuitous, though, because he implicitly included the induced power twice in his estimate of
P¥ For the lift and drag coefficients in his blade-element analysis, ‘we use polar diagrams from
real wings so that the induced drag is taken into account automatically’, (Weis-Fogh, 1972).
This procedure is quite valid provided that the blade-element analysis is based on the Sflapping
velocity, but he used the relative velocity instead. This was done explicitly in his paper of 1972,
and implicitly in his ‘ corrected results’ of 1973. The contribution of circulatory lift to the ‘total’
wing drag — the component of the net aerodynamic force that is parallel to the flapping
velocity — is therefore counted twice, thus enhancing his values for the aerodynamic power.
However, his total drag coefficients were strongly based on the results for locust forewings (Jensen
1956), which were shown to be improbably low in paper IV. His total drag coefficients are
roughly equal to my profile drag coefficients predicted by equation (27 ), in fact, and this
accounts for the agreement between our results.

The aerodynamic power represents the total energy per unit time imparted to the air by
the wings. When it is considered that the goal of hovering is simply to provide a vertical force
balancing the animal’s weight, we can derive an aerodynamic efficiency 3, as the minimum power
required to hover divided by the aerodynamic power actually expended (Weis-Fogh 1972).
The minimum power occurs for a steady downward Rankine—Froude momentum jet, and is
equal to P{p; thus

* *
Na = I;I;F = P Phe (563)
a ina T P

pro

Values of 9, are given in table 5 and range from 0.37 to 0.55. Weis-Fogh (1972) calculated
similar aerodynamic efficiencies for a hummingbird and the fruit-fly Drosophila, and commented
that these values were ‘not bad’ for an oscillating system. However, the effects of oscillation
only appear in the temporal correction factor 7 of P¥, and they are quite small in general.
It would be more correct to conclude that these aerodynamic efficiencies are ‘not bad’
considering the enhanced profile power for wings operating at high angles of attack and low
Reynolds numbers.

4.2.4. Mean inertial power

Having calculated the aerodynamic power, we need only estimate the inertial power
requirement to arrive at the total mechanical power output of the flight muscles. The mean
specific inertial power needed to accelerate the wing and virtual masses during the first half of
a half-stroke is P¥ , given by equation (39), and values are presented in table 5. The mean
of (d@/df)2 ., for the two half-strokes is used for this calculation, so P¥,, can be regarded as
the mean power required for the first half of either half-stroke. P¥_, is substantially greater than
P¥, as also found by Sotavalta (1952) and Weis-Fogh (1972, 1973), revealing that the work

12-2
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done in accelerating the wing and virtual masses is between 1.4 and 5.9 times the work done
against aerodynamic forces over the same period. During the second half of the half-stroke, an
equal but opposite mean power is obviously required to decelerate the wings, — P¥, .. Although
the mean aerodynamic power remains positive in that period, it is small compared with the
magnitude of the power for deceleration and can be taken ‘free’ from the kinetic energy of
the wings. Thus the nef power requirement is negative over the second half of the half-stroke
and equal to — P¥,, +%+m. Active braking must therefore be done to absorb the excess
kinetic energy of the wing and virtual masses.

How does this negative mechanical power fit into the net power budget? Indeed, this is a
common problem for all types of oscillatory animal locomotion, except for swimming at very
low Reynolds numbers. If the negative power is simply dissipated as heat and sound by some
form of an end stop, then it can be ignored in the power budget, and the total mean specific
mechanical power output required of the muscles is § (Pyo.+ P+ Ppro) over the cycle.

Alternatively, an elastic element could be stretched to brake the wings, storing the excess energy
as elastic strain energy. This energy could then be released at the beginning of the following
half-stroke, reducing the mechanical power demanded of the mucles. For perfect elastic storage
the net inertial power requirement over the cycle is zero, and the mean mechanical power output
of the muscle is just the aerodynamic power, }Tnd"i'}_);ﬂ- In the absence of an elastic system
or end stops, the wings must be decelerated by active tension in the flight muscles. This final
solution demands that the muscles do ‘negative’ work; i.e. they are stretched while developing
tension, instead of contracting as in ‘positive’ work. However, there seems little doubt that
negative work uses considerably less metabolic energy than an equivalent amount of positive
work for vertebrate striated muscle (Abbott et al. 1952; Asmussen 1952; Hill & Howarth 1959;
Margaria 1968), and so the metabolic cost of negative work is often disregarded in animal
locomotion studies. The muscles are therefore similar to an end stop, dissipating energy at a
very small metabolic cost, and the total mean specific mechanical power output is again
3 (PE.c+Pha+Po) over the cycle.

4.2.5. Elastic storage and mechanical power output

Out of these three possibilities, Weis-Fogh (1972, 1973) calculated the mechanical power
outputs during hovering based on the assumption that the muscles act as an end stop. He then
compared these estimates with the available measurements of metabolic rate during flight, and
concluded that an elastic system must be present in some insects because the mechanical
efficiency of the flight muscles would be unreasonably high if the inertial power was included
in their mechanical power output. He generalized and stated that ‘the available evidence
amounts to a circumstantial proof that as a group, flying insects possess and depend upon elastic
forces in order to store and release the kinetic energy of the oscillating wings’ (Weis-Fogh 1973).
The importance of elasticity in insect flight was advocated over many years by Weis-Fogh (1959,
1961, 1965, 1972, 1973), and he identified three different materials for the construction of an
elastic system: (i) the solid skeletal cuticle, (ii) elastomers such as the protein resilin, and
(iii) an elastic component present in both neurogenic and myogenic flight muscles (Buchthal
& Weis-Fogh 1956). It is now widely believed that the elasticity of active muscle residues in the
cross-bridges (Huxley & Simmons 1971; Rack & Westbury 1974). For the neurogenic insects,
Weis-Fogh noted that the major elastic stores were the cuticle of the thoracic box and the
resilin-containing wing ligaments for locusts Schistocerca gregaria and a hawk moth Sphinx ligustri,


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

LIFT AND POWER FOR HOVERING FLIGHT 173

and the flight muscles themselves for a dragonfly Aeschna grandis. He did not suggest which
structures might be most important for the myogenic insects, though. More recent calculations
by Alexander & Bennet-Clark (1977) suggest that the elasticity of myogenic, or fibrillar, flight
muscles should act as a major store for these insects. All of the insects in table 5 belong to orders
that rely on fibrillar muscle, so this result is especially important here. I think that the case
can be stated even more strongly, based on the contractile mechanics of fibrillar muscle, and
suggest that these muscles must absorb and return some of the kinetic energy of the oscillating
wing and virtual masses.

stress/kN m™2
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Ficure 6. Typical stress/strain curve for intact fibrillar muscle of Oryctes rhinoceros under non-oscillatory (stimulated
and unstimulated) and oscillatory (the loop) conditions. Adapted from Machin & Pringle (1959).

The characteristics of fibrillar muscle have often been reviewed (e.g. Pringle 1967, 1972,
1975). Figure 6 shows a typical stress/strain diagram for the intact fibrillar muscle of a coconut
beetle Oryctes rhinoceros, adapted from Machin & Pringle (1959). The contractile activity of fib-
rillar muscle is maintained by a self-oscillatory mechanism that is under mechanical, not nervous,
control. Indeed, an inertial load on the muscle is essential for oscillatory operation (the loop
in figure 6); in the absence of an inertial load, or if it is highly damped, the muscle does not
contract rthythmically. The muscle must always be under static tension, and it must also be
stretched dynamically by the inertial load (the lower half of the loop) before it will contract
(the upper half). The work done in stretching the muscle is given by the shaded area below
the loop, and the work done during contraction is equal to this area plus the loop area. The
net work per cycle is therefore equal to the area inside the loop, and is substantially smaller
than the inertial energy absorbed and returned every cycle.

It is tempting to suggest that this inertial energy is stored and released by a passive elastic
element, but the results of Machin & Pringle (1959) may not support this interpretation: the
‘elastic’ stiffness of the oscillating muscle, approximately given by the slope of the long axis
of the loop, is somewhat less than the stiffness under non-oscillatory conditions (figure 6). We
simply do not know the correct interpretation, and I shall refer loosely to an ‘elastic’ system
for convenience.
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Based on the contractile mechanics of fibrillar muscle, it seems logical to conclude that at least
some of the inertial power of flight must be absorbed and released by the muscles. I shall initially
assume that all of the inertial power is conserved, and the mean specific mechanical power
output is then equal to the aerodynamic power P¥. To convert this into the mean power per
unit weight of flight muscle, PX, the ratio of flight muscle mass to body mass must be known.
Greenewalt (1962) has collected data for insects and birds from the literature, and the ratio
is about 149, for Eristalis tenax, Apis mellifera and several Bombus species. Therefore the mean
mechanical power output per unit weight of flight muscle for DF01, HB01, BB04 and BB08
covers the small range of 17 to 19 W N71. If 14 9/ is assumed for the other insects as well, the
lowest value of P¥ is likely to be 7 W N~ for CF02.

Machin & Pringle (1959) measured a maximum mechanical power output P% equal to
3 W N~ ! for the intact fibrillar muscle of Oryctes, and 6 W N~ for a bumble bee Bombus terrestris.
They pointed out that these values are probably lower than those achieved during flight,
because they could not mimic the special loading conditions produced by the natural wing
articulation. Experiments on glycerol extracted fibrillar muscle yield even lower values (Jewell
& Riiegg 1966; Pringle & Tregear 1969), and will not be discussed. It is interesting that the
non-fibrillar flight muscle of the locust produces 8 W N71 in level flight, and up to 17 W N™!
under extreme efforts (Weis-Fogh 1964). Weis-Fogh & Alexander (1977) estimate a maximum
power output from striated muscle of about 26 W N7!, and suggest that a similar value may
apply to fibrillar muscle. All of these values refer to sustained aerobic power outputs, of course,
and they indicate that the maximum for fibrillar muscle is no better than for striated. If the
comments of Machin & Pringle (1959) are borne in mind, it should be reasonable to expect
the fibrillar muscles to deliver say 20 W N7! as required for Eristalis and the Hymenoptera,
but perhaps no more. Thus their muscles are most likely to be operating near maximum power
output just to satisfy the aerodynamic power demands of hovering, with little or no power
available for inertial requirements. This directly contradicts the conclusion of Withers (1981),
that inertial power is a substantial component in the power output of honey bees. He suggests
that inertial power is about 1.8 times the aerodynamic power, and this would indicate that
either P¥ is much greater than 20 W N! or else the aerodynamic power is extremely low.
Withers obtained his estimate by extrapolating metabolic data at different ambient air pressures
according to aerodynamic relations that the data clearly did not obey, and I doubt whether
this method can be as reliable as a straightforward mechanical analysis.

Based on the expected maximum mechanical power output, these estimates offer very strong
evidence that ‘elastic’ storage of inertial energy is essential for insects with fibrillar muscles.
We can also demonstrate that the muscles alone may not be capable of providing all the energy
storage, so elastomers and cuticular elasticity might be involved as well. The maximum energy
that can be stored ‘elastically’ in fibrillar muscle is about 0.13 J N~! according to the
calculations of Alexander & Bennet-Clark (1977). Only half of the muscle mass can be used
to decelerate the wings over the second half of a given half-stroke, and the energy per unit weight
of muscle involved is (PX,,— P¥ ,— m/(om X 4n), or about 0.25 J N7! for DF01, 0.15 for
HBO1 and BB04, and 0.20 for BB08. Based on the estimate of Alexander & Bennet-Clark, it
thus appears that the muscles can store and release almost all of the inertial energy for HBO1
and BB04, but only about 659, and 529, of it for BBO8 and DF01. The remaining energy
would have to be stored in other structures with a very high elastic efficiency if the mechanical
power output of fibrillar muscle cannot substantially exceed about 20 W N~1,
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4.2.6. Mechanochemical efficiency of flight muscle

The values for mechanical power output can now be compared with measured metabolic
rates to determine the efficiency of the fibrillar muscles. Weis-Fogh (1972, 1973) was hampered
by the virtual absence of metabolic data for freely hovering insects, but fortunately the situation
has changed since his studies. Modern interests in thermoregulation, ecology, and neural and
biochemical control of flight metabolism have led to a wealth of new information, and several
excellent reviews are available (Crabtree & Newsholme 1975; Kammer & Heinrich 1978;
Casey 1981¢; Candy & Kilby 1975; Heinrich 1981 ; for a review of the older work see Hocking
1953). Some of these modern results indicate that the metabolic rate in free flight can actually
be double the value measured in tethered flight.

The flight metabolism of hovering insects has been reported many times in the last decade
(Heinrich 1971, 1975; Heinrich & Casey 1973; Casey 19764,b, 1980, 1981 4; Bartholomew
& Casey 1978; Withers 1981). Out of this selection, the oxygen consumption of honey bees
and bumble bees is available for comparison with the insects in table 5. Heinrich (1975)
measured a mean value of 80 ml O, g(body mass)~ h™! for Bombus species during hovering,
which is much greater than the value of 1.3 for ‘resting’ B. vosnesenskii (Kammer & Heinrich,
1974). Withers (1981) reported 94 ml O, g(body mass)~* h™! for Apis mellifera in hovering,
and a relatively high value of 12 during rest. In addition, Dr. F. S. Gilbert of the Department
of Applied Biology, Cambridge has kindly let me use his unpublished measurement of
50 ml O, g(body mass)™ h™* for Eristalis tenax in ‘tethered’ hovering: in his technique the
insect had to support at least its own mass plus a small tether, which was only a small percentage
of the body mass.

The metabolic rates during insect flight are often 50-100 times the resting level, and it is
commonly assumed that the metabolic cost of physiological support systems is insignificant
in flight. There is no reason to suspect that anaerobic metabolism is involved in sustained insect
flight, so the metabolic power input can be estimated directly from the oxygen consumption
using a standard conversion factor of about 20 J chemical energy per ml O,. Neglecting the
resting metabolism, the metabolic power input is therefore 45 W/N for Bombus, 53 W/N for
Apis, and 28 W/N for Eristalis. The mechanochemical efficiency of the fibrillar muscles assuming
perfect elastic storage is given by the mechanical power output (= P¥) divided by the metabolic
power input, and is 6%, for Bombus, 5%, for Apis, and 89, for Eristalis. Even if the relatively
high resting metabolism of 4pis is subtracted from the flight metabolism, its efficiency only
increases to 6 9,.

These values are surprisingly low compared with the common expectation of 2030 %,, based
on measurements for vertebrate striated muscle (Dickinson 1929; Hill 1939, 1950; Cavagna
et al. 1964 ; Tucker 1972; Bernstein et al. 1973; Pugh 1975; Thomas 1975; Margaria 1976).
However, the mechanical power output of the fibrillar muscle, P%, would have to be much
greater than 20 W N™' to increase the efficiency significantly. Weis-Fogh (1972, 1973)
estimated higher efficiencies for his insects, but the metabolic rates he used were much lower
than those now obtained for hovering insects; for instance, the metabolic rates previously
measured for Apis and Eristalis (Hocking 1953 ; Sotavalta & Laulajainen 1961) are about one-
third of the values quoted above. Weis-Fogh assumed no elastic storage of inertial energy and
even concluded that the resulting efficiencies could be too high, and that some insects must
therefore possess an elastic system. This proof of the existence of elastic storage does not work
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with the modern metabolic rates, though. The efficiency would be an acceptable 12 %, for Aprs,
14 % for Bombus and 29 %, for Eristalis if the muscles provided the power to accelerate the wings;
the mechanical power output required for this would be 45-58 W N~ of muscle, however, over
twice the expected value.

The discussion so far has been limited to insects with fibrillar flight muscles, because suitable
film sequences of hovering were not obtained for the Lepidoptera and Neuroptera in paper
III. Casey (19814) has examined the energetics of hovering sphinx moths using morphological
and metabolic data from an earlier study (Bartholomew & Casey 1978) plus previously
unpublished data. Sphinx (hawk) moths hover with a horizontal stroke plane, and are ideally
suited for Weis-Fogh’s (1973) mechanical analysis of hovering; indeed, he presented the
kinematics of Manduca sexta to illustrate ‘normal’ hovering. Although Weis-Fogh estimated the
mechanical power output for three sphingids, he did not compare the values with the metabolic
rate in free hovering, available from Heinrich (1971). Casey thoroughly bridges this deficiency,
offering mechanical estimates and metabolic data for some 28 sphingids.

Casey evaluated the mechanical power components by the method of Weis-Fogh (1973),
except that the Rankine-Froude theory (Ellington 1978) instead of Weis-Fogh’s ‘correction’
was used for the induced power. If there is perfect elastic storage of inertial energy, then the
power output equals the total aerodynamic power, and Casey’s values yield an average
mechanochemical efficiency of 6 9, for the non-fibrillar flight muscle. Ifitis assumed instead that
the muscles accelerate the wings without the aid of any elastic storage, the efficiency increases
to 17%. By using the equations of §3 with his data for three Manduca specimens, my data on
M. sexta (paper II), and some educated guesses, I also calculate very similar efficiencies. Because
the value for no elastic storage is very close to the commonly expected 20-309,, Casey
reasonably concluded that the mechanical power output must include a significant inertial
power, and that substantial elastic saving is not indicated.

However, an efficiency argument leads to the same conclusion for Eristalis and the
Hymenoptera, so a check on the specific power output of the flight muscles should prove
informative. Although the proportion of flight muscle mass to body mass has not been reported
for the sphingids that Casey considered, a value of 14 9, is available for the hummingbird hawk
moth Macroglossum stellatarum, which has a body mass of 0.346 g (Greenewalt 1962). Casey
showed that the specific acrodynamic power Pf is essentially constant for all sphingids regardless
of body size, about 2.0 W N1, The specific inertial power, if no elastic storage is assumed, and
the metabolic power input both increase with body mass, and his allometric equations yield
values of 7.8 W N7! and 53 W N~ respectively for the mass of Macroglossum. The efficiency
and mechanical power output of the flight muscles would therefore be 49, and 14 W N1 of
muscle for perfect elastic storage, and 189, and 70 W N~ for no storage. If a maximum power
output of about 20 W N7 is tentatively accepted for the muscle, these results indicate that
almost 90 %, of the inertial energy must be saved in elastic structures; the efficiency of the flight
muscles would then be about 99.

Bartholomew & Casey (1978) found that the ratio of thoracic mass to body mass decreases
as body mass increases in the sphingids. If the flight muscle mass is a constant fraction of the
thoracic mass, then the ratio of muscle mass to body mass should also decrease. Macroglossum
is roughly the same size as the smallest sphingids investigated by Bartholomew & Casey, and
their allometric equation indicates that the ratio of muscle mass to body mass may be only
109, for their largest sphingid. This would require 20 W N~! of muscle for the aerodynamic
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power alone, and suggests almost perfect elastic storage of inertial power. Thus the larger
sphingids may have more effective elastic storage; this is another way of stating Casey’s (1981 a)
conclusion that small sphingids ‘waste’ more inertial power.

These results are consistent with Weis-Fogh’s (1972) report of a substantial elastic system
in the cuticle of the thoracic box and in the wing ligaments of Sphinx ligustri. They contradict
Casey’s conclusion, though, and readers of his paper may wish to consider the following point.
To support his conclusion that elastic storage is insignificant, Casey showed that the mechanical
power output (calculated from the metabolic power input multiplied by an efficiency of 20 %,)
minus the aerodynamic power output was roughly equal to his estimate of the inertial power
output. However, the inertial power was calculated from the combined estimate of aerodynamic
plus inertial power (if no elastic storage is assumed) minus the aerodynamic power. The net
result of these manipulations only demonstrates that the combined estimate is about 209, of
the metabolic power input, as indeed it is.

According to my analysis, either the efficiency of both fibrillar and non-fibrillar muscles is
substantially lower than the commonly accepted 20-309%,, or else the maximum mechanical
power output is much greater than the expected 20-26 W N~! of muscle. As with any
theoretical estimates giving anomalous results, the analysis itself must obviously be suspected.
I have therefore calculated the mechanical power components for a hovering hummingbird
Amazilia fimbriata using data from Weis-Fogh (1972) and paper II. PE, is 2.1 W N1, Iﬁ
equals 0.3 W N1, and P¥, is 9.1 W N~1. Weis-Fogh (1972) argued convincingly that little
elastic storage is possible in vertebrate fliers, so the mechanical power output should be
1 (Plaat Pro+ Pdoc)- The metabolic power input is 24 W N7! for hovering Amazilia (Berger
& Hart 1972), and the flight muscles constitute 27 %, of the body mass (Greenewalt 1962).
If no elastic storage is assumed, the mechanical power output is therefore 21 W N1 of muscle,
and the mechanochemical efficiency is 24 %,. Both of these estimates are quite acceptable for
top quality vertebrate striated muscle, and thus provide some confidence in the analysis.

5. CONCLUSION

Although many of the results and conclusions of Weis-Fogh’s (1973) comparative study have
been disputed in this series of papers, this does not detract from his seminal work in any way.
His paper was an excellent first approach to the aerodynamics of hovering flight, and was
necessarily based on meagre and somewhat unreliable morphological and kinematic data. By
combining the new data from papers II and III with the aerodynamic analyses of papers
IV and V, this paper has re-examined the fundamental question posed by Weis-Fogh: to what
extent do hovering animals rely on quasi-steady aerodynamics?

He concluded thatanimals using an inclined stroke plane must employ unsteady aerodynamics
because the lift required of the wings exceeds that expected under quasi-steady conditions. The
results for the hover-fly Episyrphus balteatus completely confirm his conclusion, revealing that
a mean lift coefficient Cy, 6f 4-5 is needed on the downstroke. Large downstroke lift coefficients
are an unavoidable consequence of the inclined stroke plane, because the maximum profile drag
possible on the downstroke imposes a limit to the horizontal thrust component, and thus the
magnitude, of upstroke lift.

Visual estimates of the angles of attack indicate that the enhanced downstroke lift required
for the hover-fly cannot be explained by aerodynamic mechanisms based only on translation
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of the wings. Effective angles of attack for the hover-fly tend to be lower than the average for
other hovering insects, and are smaller on the downstroke than the upstroke. Any lift mechanism
based on the angles of attack of the translating wings would therefore predict less than average
lift, with relatively more lift on the upstroke than the downstroke — predictions that clearly
contradict the net force balance.

A rotational lift mechanism is postulated instead for the hover-fly, using the strong vorticity
that must be shed during wing rotation at the ends of the wingbeat. Pronation is delayed and
overlaps the beginning of the downstroke when the hover-fly uses an inclined stroke plane. As
explained in paper IV, this increases the velocity of the leading edge with respect to the air
during rotation, and should cause vortex shedding to be concentrated at the leading edge. The
shed vorticity is likely to attach to the wing as a leading edge separation bubble during the
subsequent downstroke, providing the circulation required for lift. This mechanism would
create circulation before, and independently of, wing translation, and, like Weis-Fogh’s fling
mechanism, generates lift without the usual quasi-steady limitations. Unlike the fling mechanism,
however, this mechanism of delayed pronation should work for a single wing in isolated rotation.

The hummingbirds and the vast majority of insects hover with a horizontal stroke plane, and
support the body mass with equal lift on the downstroke and upstroke. Except for the few
animals that use the fling mechanism, Weis-Fogh concluded that this group produces lift by
the quasi-steady mechanism because estimates of Cy, did not exceed CL,max- The values were
uncomfortably close, however, especially when the Wagner effect and the quality of the data
available to Weis-Fogh are considered. Most of the insects in this study could generate the
required lift from the quasi-steady mechanism, but two insects could not: the ladybird Coccinella
7-punctata and the crane-fly Tipula obsoleta. As with the hover-fly using an inclined stroke
plane, alternative mechanisms based on the translational phase of the wingbeat are not
consistent with the observed angles of attack for these two insects. Turning to possible rotational
mechanisms, the enhanced lift of the ladybird can be explained by a near fling and partial fling
if these mechanisms can generate even half of the circulation created by a complete fling. The
crane-fly wings rotate in isolation, but flexion of the wing profile occurs halfway through
rotation. This flexion could concentrate the vorticity shed during rotation at the leading edge,
making it available for circulatory lift on the subsequent half-stroke: only about 259, of the
vorticity likely to be shed during rotation need be recovered to generate sufficient lift for the
crane-fly.

The kinematics of the honey bee, bumble bees, drone-fly, a hover-fly using a horizontal stroke
plane, and a second crane-fly T. paludosa are basically the same as T obsoleta, and we cannot
accept the quasi-steady mechanism for them while rejecting it for the first crane-fly. All of these
insects flex their wings in a similar manner, and the flex mechanism of lift generation may
operate for them all. These results lead to the opposite conclusion from Weis-Fogh’s, and
indicate that most, if not all, hovering animals do not rely on quasi-steady aerodynamics, but
use rotational lift mechanisms instead.

The new data and al.erodynamic analyses do not alter significantly the mechanical power
estimates of Weis-Fogh (1973) in general, although agreement between our results is fortuitous
in some cases. The induced power requirement is only about 159, greater than the simple
Rankine-Froude estimate for animals hovering with a horizontal stroke plane, but may be up
to 60 9, higher for those using an inclined stroke plane. Profile power is of the same magnitude
as induced power, giving aerodynamic efficiencies of 37-55 9. The power needed to accelerate
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the wing mass and virtual mass during the first half of a half-stroke is 1.4-5.9 times the
aerodynamic power. Over the second half the net power requirement is negative; this indicates
that the excess kinetic energy of the wing and virtual masses must be dissipated or stored
elastically.

If perfect elastic storage is assumed, the mechanical power output would be 17-19 W N—!
of fibrillar flight muscle. This value is quite close to the 26 W N~* estimated by Weis-Fogh &
Alexander (1977) as the maximum power output for striated muscle, and they suggested that
fibrillar muscle should be similar. Thus the fibrillar muscle may be operating near maximum
power output just to satisfy the aerodynamic power demands, with little or no power available
for inertial requirements. Considerable elastic storage of the kinetic energy of the wings would
then be essential. Thisinterpretation is consistent with the estimates of Alexander & Bennet-Clark
(1977) on the maximum energy that could be stored elastically in fibrillar muscle, and the
results of Machin & Pringle (1959) that fibrillar muscle must absorb and return the kinetic
energy of an inertial load in order to maintain self-oscillation.

A maximum power output around 20 W N™! yields mechanochemical efficiencies of only
5-89, based on the metabolic rates of freely hovering insects, however. These values are much
lower than the commonly accepted 20-30 %,. Higher efficiencies would demand greater power
output from the muscles, which would in turn require little elastic storage of the inertial power.
Efficiencies of 12-29 9/, would result if there was no elastic storage, but the maximum power
output from the fibrillar muscle would then be over twice the accepted value. Similar
conclusions about efficiency and power output were also drawn for the non-fibrillar flight muscle
of sphinx moths.

Neither the mechanochemical efficiency nor the maximum power output is actually known
for fibrillar muscle. Substantial elastic storage in the muscle seems almost certain, though, and
this indicates that low efficiencies and mechanical power outputs of about 20 W N~ of muscle
are quite likely. Using 20 W N~ for the non-fibrillar muscle of sphinx moths results in an
efficiency of 9%,, which is very close to the value of 11, calculated by Weis-Fogh (1976) for
locusts in level flight. Even though these low efficiencies for both types of insect flight muscle
are somewhat disturbing, they are not necessarily worse than for vertebrate striated muscle:
Heglund et al. (1982) have estimated comparable efficiencies for some birds and mammals in
terrestrial locomotion.

I thank Dr F.S. Gilbert for permission to use his metabolic data on Eristalis, and Dr
K. E. Machin and Dr T. M. Casey for stimulating discussions.
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